Pedagogical Uncertainty Propagation and Significant Figures in
Lean 4

Alexander Meiburg

September 8, 2025

Abstract

We present a library for the Lean 4 theorem prover for numeric types with uncertainty
propagation under exact, and crucially, inexact models, for precise modeling of semantics used
in applied mathematical settings. The Lean 4 theorem prover provides a basis for verifiable
computation, and is increasingly finding a role in the classroom as a companion to textbook
and lecture material. It has some support for verifiable interval arithmetic, which has rigorous
guarantees on error bounds. But scientific or educational contexts often define distinct semantics
for uncertainties that treat errors less conservatively, such as the notion of ”significant figure”
tracking, and for Lean to be used pedagogically these semantics must be modeled. This library
permits rigorous verification of textbook problems with unique, inexact answers.

1 Introduction

Uncertainty propagation is a fundamental aspect of scientific computation, and science in general:
given input data with uncertainty, how do we define a meaningful result after applying mathematical
operations? While informal rules for significant figures are taught in early science education, a
formal, mechanized treatment is rare. Consider the following problem:

A cylinder has height equal to its two times its diameter, and its volume is 4.86m3.
What is its height?

3/16x4.86

T
While that exact answer might be accepted by a teacher, the mathematically equal expression

An exact answer would be h = m, and this rounds at three decimal places to 2.91m.

6y % would likely not, and the answers 3m or 2.9143081m would often be considered incorrect

for misrepresenting the accuracy. In math classrooms the topic of uncertainty is often secondary,
but in science classrooms this is often the subject of several lessons; in science publications, an

incorrect presentation of uncertainty verges on misconduct.

3/16x4.86

—2m beyond its numerical value, that is

There is something implied by the expression

clear. The Lean 4 theorem prover[7] and its companion library Mathlib[6] define rational and
real numbers and permit the computer verification of proofs about these quantities. For instance,

291 < {/ M < 2.92 is a provable theorem in Lean — as are, for instance, the facts that its exact
representation is a non-repeating decimal, and that its irrationality measure is at most fifteen. But
that 2.91 would be the unique answer we expect this to be equal to, and that 2.910 represents
something else, is an aspect of the semantics of the uncertainty that is as-of-yet not present.

We present a software package SigFigs, building on Lean and Mathlib, which defines these
semantics. We build on Mathlib’s existing interval arithmetic library, to give e.g. interpretation of



the number 4.86 as the interval [4.855,4.865], and similar syntax for easily applying mathematical
operations to intervals. We then provide two other less rigorous models of uncertainty propagation,
that are still popular used in the classroom setting: linear propagation of uncorrelated errors, and
the popular ”count the significant figures” method, which gives its name to the package.

2 Background

Formal verification is the process of using computer-assisted proof systems to rigorously check
the correctness of mathematical statements, algorithms, and even entire software systems. The
motivation for formal verification arises from the limitations of traditional mathematical practice:
while human-written proofs are the foundation of mathematics, they are susceptible to errors,
omissions, and ambiguities. As mathematics and computation have grown in complexity, so too
has the need for tools that can provide higher degrees of certainty.

The Lean theorem prover[7], originally developed at Microsoft Research and now maintained
by a vibrant open-source community, is a modern system designed to be both powerful and user-
friendly. Lean’s language is expressive enough to formalize advanced mathematics, while its au-
tomation and libraries make it practical for large-scale formalization. The Lean mathematical
library, Mathlib[6], is one of the largest collections of formalized mathematics in existence, covering
topics from basic algebra to advanced analysis and topology.

It is relatively recently that Lean has started to find room in the classroom.[I] Theorem provers,
including Lean, have a famously steep learning curve compared to a typical programming language.
Using Lean comfortably requires knowing not only the basics of type theory, but also functional
programming, a deep hierarchy of mathematical definitions, and the conventions needed to navigate
Mathlib’s huge list of existing theorems. Lean is mostly used in courses whose objective is to teach
computer-verified proof. But it has been tested in courses teaching basic mathematical logic, or
even generic mathematical courses with a Lean companion such as topology[5l, 4], cryptography[2],
and real analysis[§]. The company Harmonic has announced[3] an educational app for mathematical
fields, backed by Lean verification. Within this context, it seems necessary to equip Lean with the
necessary tools for less precise fields of math.

Formal verification is often associated with stringent guarantees of correctness, and disastrous
consequences in case of failure — a typical example is verifying that the software running a nuclear
reactor cannot deadlock. In this sense, formal verification in a pedagogical setting may seem un-
necessary. But formal verification has great pedagogical value: it forces us to make all assumptions
explicit, to clarify definitions, and to confront edge cases that might otherwise be overlooked. In the
context of uncertainty propagation, this means precisely specifying how uncertainty is represented,
how it propagates through different types of operations, and what guarantees can be made about
the results. The formalization described in this paper is an example of how modern proof assistants
can be used to bring clarity and rigor to even the most practical side of scientific computation.

3 Pedagogical vs. Mathematical Models: Operational Semantics
of Error Propagation

In scientific education, the rules for propagating uncertainty—such as those taught in grade school
or introductory university courses—are often quite different from the mathematically exact models
used in rigorous analysis. The pedagogical model is designed for clarity, intuition, and ease of use,
rather than for capturing all possible sources of error or providing strict bounds. For example,
the rules for significant figures are simple to state and apply, but they are not mathematically



robust: addition and multiplication are not associative, and the results are often only heuristically
justified. In contrast, mathematicians and numerical analysts are concerned with precise definitions,
rigorous error bounds, and the preservation of mathematical properties such as associativity and
distributivity.

This distinction highlights the importance of *operational semantics* in formalization. By
operational semantics, we mean a model of notation and numbers that reflects the intended meaning
of the problem as it is presented to students or practitioners. In other words, the semantics of a
calculation are determined not just by the underlying mathematics, but by the conventions and rules
that govern how numbers and uncertainty are represented and manipulated in practice. Classroom
science often prioritizes rules that are easy to remember and apply, even if they are not universally
valid, while mathematicians seek models that are internally consistent and generalizable.

Consider the following example from the IntervalExamples.lean file:

#check (1.23 : RRange) --when type-ascripted, the decimal ts interpreted as an interval [1.225
#check 3.21 --note that this parses as a "Float™ on its own!

In a classroom setting, a number like 1.23 is often understood to mean “1.23 with uncertainty
in the last digit,” i.e., 1.23 + 0.005. The operational semantics in Lean can be set up to reflect
this, so that the type of the number determines how it is interpreted. In contrast, a mathematician
might insist on specifying the interval explicitly, or distinguishing between exact and approximate
values.

Another example is the addition of uncertain quantities. In the pedagogical model, the rule is
often “round the result to the least precise decimal place,” as in:

example (A B : RRange) (hA : A = 100 + 3) (hB : B = 30 = 15)
A+ B =130 £ 18 := by
sorry

Here, the uncertainties are simply added, and the result is rounded to match the least precise
input. This is easy to teach and apply, but does not always reflect the true propagation of error.
In a more exact mathematical model, one might add the uncertainties in quadrature (i.e., take
the square root of the sum of the squares), or use interval arithmetic to compute the full range of
possible values.

Nonlinear functions provide another point of divergence. In the FOBallExamples.lean file,
uncertainty is propagated through functions using a first-order (differential) approximation:

#check (letI x : FOBall := Real.pi; TReal.sin (7 * x + 6.7))

This approach, common in classroom science, uses the derivative to estimate how uncertainty
in the input affects the output. It is fast and intuitive, but only accurate for small uncertainties
and well-behaved functions. The interval model, by contrast, would compute the exact image of
the interval under the function, which is mathematically rigorous but often impractical for hand
calculation or teaching.

The ability to reflect these different operational semantics in Lean is crucial for both pedagogy
and research. It allows us to formalize textbook problems in a way that matches their intended
meaning, to check the correctness of solutions under the rules actually taught, and to compare the
outcomes of different models. For example, a teacher can encode a problem using the significant
figures model to match classroom expectations, while a mathematician can use interval arithmetic
for rigorous bounds. By providing multiple models of uncertainty—each with its own operational
semantics—our framework enables users to choose the approach that best fits their needs, whether
for rigorous proof, practical computation, or educational clarity.



4 Models of Uncertainty

We provide three models, each with different trade-offs between rigor, usability, and pedagogical
value.

4.1 Interval Arithmetic RRange

In interval arithmetic, each value is represented as an interval [a, b] containing all possible values.
All operations are defined to ensure the result interval contains the true value. This model is math-
ematically rigorous and suitable for downstream theorem proving, but can be overly conservative
in practice.

#check (1.23 : RRange) -- [1.225, 1.235]
#check 7 = 1 -- [6, 8]

As an example of applicability to a physics setting:
example (g t height : RRange) (hg : g

height - (1/2) * g * t°2 ~ 19. :
sorry

=9.8) (ht : t = 5.18) (h_height : height =
by

By first declaring the variables g, ¢, and height as RRanges the subsequent hypotheses automat-
ically interpret the numerical literals as intervals. For instance, g is interpreted as [9.75,9.85]. This
inaccuracy propagates through the subsequent calculations. The value % is interpreted precisely as
a rational number, in contrast to 0.5 which would mean [0.495, 0.505].

150.0)

The final expression iwight—%*g*t2 evaluates to a particular interval, [17.545191875, 19.494453125],

or equivalently 18.5198225 4+ 0.974630625. A true theorem would then be to equate these intervals:

example (g t height : RRange) (hg : g = 9.8) (ht : t = 5.18) (h_height : height =
height - (1/2) * g * t°2 = 18.5198225 * 0.974630625 := by
sorry

while equating with 19 or 19.0 would be incorrect. Due to Lean’s stringent notion of equality,
the two sides must be exactly equal, including their uncertainty, which does not reasonably reflect
the intent of a textbook problem. This highlights the trade-off between rigor and pedagogical value
in this model. But, as two ways to reasonably express the relationship of an answer, we do offer two
other notions of a “correct answer” that are available for stating a problem. One, as seen above, is
an approximate equality, ~ 19.. This means is defined to mean that the interval 19. := [18.5,19.5]
overlaps with the interval on the other side, and that the associated uncertainties to these intervals
are within an order of magnitude difference. This forces there to be a unique correct scientific
notation on the right-hand side that satisfies the ~ relation.

The other, much weaker notion is simply expressing membership in the interval:

example (g t height : RRange) (hg : g = 9.8) (ht : t = 5.18) (h_height : height =
19 € height - (1/2) * g * t72 := by
SOorry

This merely means that the (exact real number) 19 is consistent with the uncertainties. But
19.192082, as well as 16 + 7, would be satisfy this membership relation as well.

150.0)

150.0)



4.2 First-Order Ball Arithmetic (FOBall)

First-order ball arithmetic represents a value as a center and a radius, interpreted as a sensitivity
or standard deviation. Errors are added in quadrature, and uncertainties are propagated using
derivatives (the delta method).

#check 1 + 157 -- 1 with uncertainty 157
#check (1.5 : FOBall) -- 1.5 # 0.05
#check (1.50 : FOBall) -- 1.5 # 0.005

4.3 Significant Figures (SigFigs)

The significant figures model represents a value as a center and a number of significant digits. This is
the most intuitive for students, but is the least mathematically robust: addition and multiplication
are non-associative, and all bounds are heuristic.

5 Examples

5.1 Physics Problem: Free Fall

Problem: You drop a ball from a height of 150.0 m. After 5.18 seconds, how far is it above the
ground? Use h = hy — % gt?.

example (g t height : SigFig) (hg : g = 9.8) (ht : t = 5.18) (h_height : height = 150.0)
height - (1/2) * g * t72 = 19. := by
sorry

Here, the operator =~ indicates that the output is an approximation to the correct accuracy,
and the types ensure that uncertainty is propagated.

5.2 Adding Uncertain Quantities

Problem: Alice has a box of chocolates that weighs 100 + 3 g, and Bob has a box that weighs
30 + 15 g. How much do they have together?

example (A B : RRange) (hA : A = 100 # 3) (hB : B = 30 # 15)
A +B =130 £ 18 := by
sorry

6 Implementation in Lean 4

The package overloads arithmetic operations for each uncertainty model, so that textbook-style
problems can be written naturally in Lean. Numeric literals are interpreted with the correct
uncertainty, and notations such as & are available.



7 Conclusion and Future Work

This formalization enables both rigorous and pedagogically useful reasoning about uncertainty in
Lean. Future work includes:

e Extending support for all field operations and nonlinear functions.
e Theorems for converting between models.

e Integration with computable real and interval packages for more automation.

Acknowledgments

We thank the Lean and Mathlib communities for their support.

References

[1] Courses using Lean. https://leanprover-community.github.io/teaching/courses.htmll
[Accessed 31-08-2025].

[2] Matthew Ballard. Intro to Cryptography — 587.f24.matthewrobertballard.com. https://587.
f24.matthewrobertballard. com/. [Accessed 31-08-2025].

[3] Harmonic Fun. Aristotle achieves gold medal-level performance at the international mathemat-
ical olympiad, ios app beta launch. https://harmonic.fun/news, 2025. [Accessed 31-08-2025].

[4] Miguel Marco. Consulta de Gufas Docentes. https://sia.unizar.es/doa/consultaPublica/
look [conpub]MostrarPubGuiaDocAs7entradaPublica=true&idiomaPais=es.ES&
_anoAcademico=2023&_codAsignatura=27008. [Accessed 31-08-2025].

[5] Miguel Marco. GitHub - miguelmarco/topologia_general lean: Material auxiliar en Lean3 Para
un curso de topologia general. https://github.com/miguelmarco/topologia_general_lean.
[Accessed 31-08-2025).

[6] The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM SIG-
PLAN International Conference on Certified Programs and Proofs, CPP 2020, page 367-381,
New York, NY, USA, 2020. Association for Computing Machinery.

[7] Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming lan-
guage. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction — CADE 28, pages
625-635, Cham, 2021. Springer International Publishing.

[8] Terence Tao. GitHub - teorth/analysis: A Lean companion to Analysis I. https://github.
com/teorth/analysis| 2025. [Accessed 31-08-2025].


https://leanprover-community.github.io/teaching/courses.html
https://587.f24.matthewrobertballard.com/
https://587.f24.matthewrobertballard.com/
https://harmonic.fun/news
https://sia.unizar.es/doa/consultaPublica/look[conpub]MostrarPubGuiaDocAs?entradaPublica=true&idiomaPais=es.ES&_anoAcademico=2023&_codAsignatura=27008
https://sia.unizar.es/doa/consultaPublica/look[conpub]MostrarPubGuiaDocAs?entradaPublica=true&idiomaPais=es.ES&_anoAcademico=2023&_codAsignatura=27008
https://sia.unizar.es/doa/consultaPublica/look[conpub]MostrarPubGuiaDocAs?entradaPublica=true&idiomaPais=es.ES&_anoAcademico=2023&_codAsignatura=27008
https://github.com/miguelmarco/topologia_general_lean
https://github.com/teorth/analysis
https://github.com/teorth/analysis

	Introduction
	Background
	Pedagogical vs. Mathematical Models: Operational Semantics of Error Propagation
	Models of Uncertainty
	Interval Arithmetic ℝRange
	First-Order Ball Arithmetic (FOBall)
	Significant Figures (SigFigs)

	Examples
	Physics Problem: Free Fall
	Adding Uncertain Quantities

	Implementation in Lean 4
	Conclusion and Future Work

